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Motivation

• Critical Brain hypothesis
• The brain is near criticality, assembly of neurons exhibit criticality

[MB11]
• Description of phase diagram, criticality without invariance by

translation, without lattice or an a priori notion of space
• Statistical system with a categorical flavour:

• Controlling the complexity of statistical systems
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Standard approach to statistical systems and
thermodynamic limit: Setting

• I index of (finite) random variables: (Xi ∈ Ei , i ∈ I)
• Global state space Ω =

∏
i∈I Ei denoted as E with σ−algebra E ,

• P(E) space of measures
• H = C0(E) is the space of observables

• a ⊆ I finite subset of I, Pf (I) the set of finite subsets
• Xa ∈ Ea =

∏
i∈a Ei or (E ,Ea) when seen in (E ,E )

• for b ⊆ a, iab : Ea → Eb in Mes(Ea,Eb)

• U(a) ⊆H space of observable that depend only on the Xa

• iba : U(b) ↪→ U(a)
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Standard approach to statistical systems and
thermodynamic limit: Prescribed conditional
probabilities

• Statistical system: collection of border conditions

• Probability kernel p : Ea → E ,
• p ∈ Kern(Ea,E)

• ∀ωa ∈ Ea, pωa ∈ P(E)

• For A ∈ E , p(A|ωa) “∼=” E[A|Ea]

Sergeant-Perthuis (IMJ-PRG) Intersection, decomposition, optimization PhD Defence 5 / 44



Standard approach to statistical systems and
thermodynamic limit: Proper kernel

Standard Definition: Proper Kernel [Geo88]
Let E ⊆ E1 be two σ-algebras of a set E , a kernel
p ∈ Kern ((E ,E1), (E ,E )) is proper if and only if, for any A ∈ E , any
B ∈ E1 and any ω ∈ E ,

p(A ∩ B|ω) = p(A|ω)1[ω ∈ B]

For f a E1−measurable function,

p(f |ω) =

∫
f (x)p(dx |ω) = f (ω)
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Standard approach to statistical systems and
thermodynamic limit: tower rule

• Tower rule: for A ∈ E ,

E
[
E[A|Fa|Fb]

]
= E[A|Fb]

• For kernels, for ω ∈ E ,

pbpa(A|ω) =

∫
p(A|xωa)p(dx |ωb)

pb

(
pa(A|.)|ωb

)
= pb(A|ωb)
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Standard approach to statistical systems and
thermodynamic limit: Specification

Standard Definition: Specification [Geo88]
A specification with parameter set I and state spaces (E ,E ) is a
collection (γa,a ∈Pf (I)) of proper kernels such that for any a ∈Pf (I),
γa ∈ Kern ((E ,Ea), (E ,E )) and which satisfies that for any a ⊆ b, i.e
b ⊆ a, any A ∈ E and ω ∈ E ,

γbγa(A|ω) = γb(A|ω)
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Standard approach to statistical systems and
thermodynamic limit: Gibbs measures

Definition: Gibbs measures
Let γ be a specification with state space E , the set of probability
measures,

G (γ) = {µ ∈ P(E) : Eµ(A|Ea) = γa(A|.) µ a.s.}

is called the set of Gibbs measures of γ.
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Categories of measurable spaces and probability
kernels

• Mes: Objects are measurable space, Morphisms are measurable
applications
• Kern: Objects are measurable spaces, Morphisms are probability

kernel
• Mes is a subcategory of Kern

Remark: One element measurable space
Let ∗ be the one element measurable space, and E any measurable
space,

Kern(∗,E) ∼= P(E)

Sergeant-Perthuis (IMJ-PRG) Intersection, decomposition, optimization PhD Defence 10 / 44



From classical description to categorical description

Specification

E

EaEc

Eb

∗

Proposition 8.3.1

Presheaf

E

EaEc

Eb

∗

• The collection (ia,a ∈P(I)) encoded the functor of observables
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Categorical approach: new definition of Specification

Definition 8.3.6: Specification
Let A be a poset, a specification is a couple (G,F ) of presheaf-functor
where G : A op → Mes and F : A → Kern such that for any a,b ∈ A
with b ≤ a,

Ga
bF b

a = id
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Categorical approach: new definition of Gibbs
measures of a specification

Definition 8.3.7: Gibbs measures for specifications
Let γ = (G,F ) be a specification over A , we shall call the Gibbs
measures of γ the sections of F ,

G (γ) = {Pa ∈ P(F (a)),a ∈ A | ∀b ≤ a,F b
a Pb = Pa}
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Dictionary of concepts in the categorical setting

Statistical system
• Specification
• Gibbs measure
• Independent random variables

Statistical system in Kern
• Couple of presheaf/ functor
• Limit of the functor
• ?
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L∞ presheaf

• L∞(E): space of bounded measurable functions
• L∞ a presheaf Mes→ Vect

• For f ∈ L∞(E), h : E1 → E ,

L∞(h)(f ) = f ◦ h

• L∞ a presheaf Kern→ Vect
• For f ∈ L∞(E), ω1 ∈ E1 and p : E1 → E ,

L∞(p)(f , ω1) =

∫
f (ω)p(dω|ω1)
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Categorical approach: Decomposable specifications

Definition 8.4.1: Decomposability
A specification γ is decomposable if L∞γ is decomposable, i.e. there is
a collection of vector spaces (Sa,a ∈ A ) such that for any a,b ∈ A
such that b ≤ a,

L∞G(a) = L∞F (a) ∼=
⊕
c≤a

Sc

L∞Gb
a
∼= iba :

⊕
c≤b

Sc →
⊕
c≤a

Sc , L∞F a
b
∼= pa

b :
⊕
c≤a

Sc →
⊕
c≤b

Sc
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Categorical approach: direct sum of constant functors
and presheaves

Sergeant-Perthuis (IMJ-PRG) Intersection, decomposition, optimization PhD Defence 17 / 44



Results for decomposable specifications

• Decomposable specification imply acyclic functors (Chapter 7)
and acyclic presheaves (Chapter 8)
• Extend Kellerer’s result on the marginal problem and cohomological

interpretation.
• Characterization of Gibbs measures of decomposable

specifications (Chapter 8)
• Independent random variables are a particular case of

Decomposable specifications

Why decomposability? When decomposability?

Sergeant-Perthuis (IMJ-PRG) Intersection, decomposition, optimization PhD Defence 18 / 44



Motivation for decomposable specifications: Factor
spaces and Factorization spaces

E =
∏

i∈I Ei . For a ⊆ I, Ea =
∏

i∈a Ei and πa : E → Ea

Definition: Factor spaces

The a−factor space denotes U(a) is the set of functions, f , of RE that
factor through πa, i.e there is f̃ ∈ REa , f = f̃πa
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Particular case of an Interaction decomposition :
Decomposition into interaction subspaces

Theorem: Decomposition into interaction subspaces
[Spe79][Lau96]

There is a collection of vector subspaces of RE , (Sa,a ⊆P(I)), such
that, for any a ⊆P(I),

U(a) =
⊕
b⊆a

Sb

and any two Sa,Sb, with a 6= b, are orthogonal to one another.
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How to desbribe dependencies?

• A graphical model is a way to express the interactions between
random variables from the connectivity properties of a graph

X YZ

Gibbs random field
• Hamiltonian
• H(x , y , z) = Φ1,3(x , z) + Φ2,3(y , z)

Markov random field
• Factorization space
• PH = f (x , z)g(y , z)

• X ⊥⊥ Y |Z

P(x , y , z) =
e−βH(x ,y ,z)∑

(x ,y ,z)∈X×Y×Z
e−βH(x ,y ,z)

Sergeant-Perthuis (IMJ-PRG) Intersection, decomposition, optimization PhD Defence 21 / 44



B potential space, B factorization space

B-potential

U(B) =
∑
a∈B

U(a)

B factorization space,

FB = exp(U(B))

• We can restric our attention to lower sets.
• For B ⊆P(I), B̂ = {b ∈P(I) : ∃a ∈ B,b ⊆ a}
• If B̂ = B, B is a lower set of P(I).
• Sets of lower set: U (P(I)).

Sergeant-Perthuis (IMJ-PRG) Intersection, decomposition, optimization PhD Defence 22 / 44



Graphoid intersection property

Proposition: Graphoid intersection property
Let X ,Y ,Z be three random variables that take values in a finite set
and for which the probability density PX ,Y ,Z is strictly positive, then,

X ⊥⊥ Y |Z and X ⊥⊥ Z |Y =⇒ X ⊥⊥ (Y ,Z )

• X → 1, Y → 2, Z → 3
• A = {{1,3}, {2,3}}
• X ⊥⊥ Y |Z ⇐⇒ PX ,Y ,Z ∈ FA

• B = {{1,2}, {2,3}}
• X ⊥⊥ Z |Y ⇐⇒ PX ,Y ,Z ∈ FB

• FÂ ∩FB̂ ⊆ FÂ ∩B̂
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Weaker Intersection property:
Extension for factorization spaces

Proposition [SP]: Weaker Intersection property
(for factor spaces)
For any collection of lower sets of P(I), (Bj , j ∈ J),⋂

j∈J

U(Bj) = U(
⋂
j∈J

Bj)

• Reducing the proof of the Hammersley-Clifford Theorem to a
property of graphs. (Chapter 2 or [SP19a])
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Interaction decomposition:
Functors from a poset to Vect

• Gr V the poset of vector subspaces of a vector space V
• [A ,Gr V ] the collection of increasing functions from A to Gr V

Definition 3.3.1: Decomposable collection of vector subspaces
U ∈ [A ,Gr V ] is decomposable if and only if there is a collection of
vector subspaces (Sa ⊆ V ,a ∈ A ) such that for any a ∈ A

U(a) ∼=
⊕
b≤a

Sb

and for b ∈ A with b ≤ a, Ub
a is isomorphic to the inclusion⊕

c≤b Sc →
⊕

c≤a Sc . We will call (Sa,a ∈ A ) a (interaction)
decomposition of U.
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Interaction decomposition :
Functors from a poset to Vect, equivalence theorem

Definition 3.3.3: Intersection property
Let A be any poset, an increasing function U ∈ [A ,Gr V ] is said to
verify the intersection property (I) if and only if,

∀B,C ∈ U (A ),
∑
b∈B

U(b) ∩
∑
c∈C

U(c) ⊆
∑

a∈B∩C

U(a) (I)

Theorem [SP]: Equivalence theorem
If A is a well-founded poset, U ∈ [A ,Gr V ] is decomposable if and
only if U verifies (I).

• Extension to functors from A to Vect
[SP19b], Chapter 3 Proposition 3.2.1
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Intersection property: a key element
for building interaction decompositions

∀a ∈ A , U(a) = Sa ⊕
∑
b�a

U(b)

Sa1 ∩ U(a2) ⊆
∑
b�a1

U(b)
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More around the interaction decomposition

• Interaction decomposition and intersection property for
presheaves from a poset to the category of modules
(Equivalence Theorem 4.4.1 Chapter 4, [SP20])
• Interaction decomposition and intersection property for functors

from a poset to the the category of Hilbert spaces, with
morphisms isomorphisms
Equivalence Theorem 5.4.1 Chapter 5 =⇒ Generalization of
Chaos decomposition
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Interaction decomposition for presheaves:
Definition of decomposability

• When a collection of vector subspace is decomposable there are
several decompositions possible.
• Additional data of collection of projectors to distinguish them.

Definition 4.2.4: Decomposable collection of projectors
Let U ∈ [A ,Gr V ] be decomposable, let (πa,a ∈ A ) be a collection of
projectors onto the U(a); this family is decomposable if and only if
there is a decomposition of U, (Sa,a ∈ A ), such that for any b ≤ a,

π|U(b)
U(a)
∼= pa

b

where pa
b is the projection of

⊕
c≤a Sc onto

⊕
c≤b Sc .
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Interaction decomposition for presheaves: a particular
case when considering Meet semi-lattices

Definition: Meet semi-lattice
Let A be a poset, a,b ∈ A . A has a meet for (a,b) when there is d
such that,

∀c ∈ A , c ≤ a & c ≤ b =⇒ c ≤ d

d is unique and we shall note it a ∩ b.
We will call meet semi-lattice any poset that has all meets for any
couple.
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Interaction decomposition for presheaves:
Equivalence theorem

Definition 4.3.6: Intersection property for collection of projectors
Let A be a finite meet semi-lattice, and let (πa,a ∈ A ) be a collection
of projectors. This collection satisfies the intersection property when,

πaπb = πa∩b (I)

Theorem [SP]: Equivalence theorem
A collection of projectors is decomposable if and only if it satisfies the
intersection property
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Particular case of decomposable specification

• P ∈ P(E) defines a collection of projectors E[·|U(a)],a ⊆ I

Corollary 4.3.2: Interaction Decompositions for factor spaces
Let I be a finite set, (Ei , i ∈ I) a collection of finite sets, and P a
probability measure on E , (Ea[·|Fa],a ∈P(I)) is decomposable if and
only if P is a product measure, i.e if there is (pi ∈ P(Ei), i ∈ I) such that
P = ⊗

i∈I
pi .

• Independent statistical systems are a particular case of
decomposable specifications
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Dictionary of concepts in the categorical setting

Statistical system
• Specification
• Gibbs measure
• Independent random variables

Statistical system in Kern
• Couple of presheaf/ functor
• Limit of the functor
• Decomposable specifications
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Bayesian point of view

Bayesian point of view:
• Θ space of parameters, Ω space of the observations
• A kernel p : Θ→ Ω: for θ ∈ Θ, pθ ∈ P(Ω)

• A prior: P0 ∈ P(Θ)

• Update of beliefs: posterior after making an observation ω,

P(θ|ω) =
P0(θ)pθ(ω)∑
θ∈Θ P0(θ)pθ(ω)
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Variational inference

• Approximate the posterior
• Natural notion of length between two distributions Q,P ∈ P(θ):

Relative Entropy or Kullback-Leibler divergence

S[Q|P] =
∑
θ∈Θ

Q(θ) ln
Q(θ)

P(θ)

• In Statistical Mechanics: free energy with respect to a Hamiltonian
H and at temperature T ,

F (Q) = EQ[H]− TS(Q)

• Find Q in a family of probability distributions that minimizes S[Q|P]

Sergeant-Perthuis (IMJ-PRG) Intersection, decomposition, optimization PhD Defence 35 / 44



Region-based free energy approximation,
a motivation for Regionalized optimization

Definition: Region-based free energy approximation [YFW05] or
Generalized Bethe free energy
Let I be a finite set and let E =

∏
i∈I Ei be a product of finite sets and

A a subposet of P(I). Yedidia, Freeman, Weiss consider for
collections Q = (Qa ∈ P(Ea),a ∈ A ) of measures compatible by
marginalization, a free energy built from the entropy of each probability
measure Qa,

FBethe(Q) =
∑
a∈A

c(a) (EQa [Ha]− S(Qa)) (0.1)

with (Ha ∈ U(a),a ∈ A ) a collection of Hamiltonians.
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Regionalized optimization:
Optimization with constraints given by a presheaf

• Generalization for presheaves from a poset to the category of
finite vector spaces
• Simple algorithm for finding their critical points when the presheaf

is decomposable
• PCA for filtered data
• Free energy approximation for diagrams in Kern
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Contributions

• Chapter 2: Weak Intersection property for factor spaces, reducing
Hammersley-Clifford theorem to a property of graphs.
Theorem 2.4.1, Corollary 2.5.2
• Chapter 3: Intersection property is equivalent to the existence of

an interaction decomposition for injective functors from a well
founded poset to the category of vector spaces
Theorem 3.5.1
• Chapter 4: Equivalence theorem for presheaves in the category of

modules and description of interaction decompositions for factor
spaces
Theorem 4.4.1, Corollary 4.3.2
• Chapter 5: Equivalence theorem for functors in the category of

Hilbert spaces with morphisms isometries (generalization of the
Chaos decomposition)
Theorem 5.4.1
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Contributions

• Chapter 6, with D. Bennequin, O. Peltre, J.P. Vigneaux : Extra-fine
sheaves, their acyclicity, homological interpretation and extension
of Kellerer’s result for the marginal problem (injective functor case)
Theorem 6.4.3, Theorem 6.5.3
• Chapter 7: acyclicity of decomposable presheaves

Theorem 7.2.1
• Chapter 8: Reformulation of Gibbs measures for diagrams over a

poset in the category of probability kernels, characterization for
decomposable specification.
Theorem 8.5.1
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Contributions

• Chapter 9: Formulation of a global optimization problem from a
collection of local ones; applications are a regionalized version of
the PCA for data provided with a filtration, an extension of the free
energy underlying the General Belief Propagation to diagrams
over a poset in the category of probability kernels. When the
presheaf is decomposable we provide a simple algorithm for
finding the critical points.
Theorem 9.2.1, Theorem 9.2.3, Proposition 9.3.3
• Chapter 10 with Y. Timsit and D. Bennequin: statistical properties

of the graph of the ribosome, definition of a conditional statistical
test.
Theorem 10.6.1
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Thank you very much for your attention

Thank you very much for your attention!
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Grégoire Sergeant-Perthuis, Intersection property and interaction
decomposition, arXiv:1904.09017v2, 2019.
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